
Jito Restaking
Security Assessment

October 25th, 2024 — Prepared by OtterSec

Nicola Vella nick0ve@osec.io

Robert Chen notdeghost@osec.io

mailto:nick0ve@osec.io
mailto:notdeghost@osec.io


Table of Contents

Executive Summary 2

Overview 2

Key Findings 2

Scope 3

Findings 4

Vulnerabilities 5

OS-JRS-ADV-00 | Unauthorized Withdrawal of Unstaked Amount 6

OS-JRS-ADV-01 | Slashing-Induced Share Dilution 7

OS-JRS-ADV-02 | DOS Due to Withdrawal Ticket Desynchronization 9

OS-JRS-ADV-03 | Lack of Proper Permission Checks and Safeguards 11

OS-JRS-ADV-04 | Vault Share Inflation Risk 13

General Findings 14

OS-JRS-SUG-00 | Unsafe SPL Token ID Handling 15

OS-JRS-SUG-01 | Risk of Over-withdrawing 16

OS-JRS-SUG-02 | Code Maturity 17

Appendices

Vulnerability Rating Scale 18

Procedure 19

© 2024 Otter Audits LLC. All Rights Reserved. 1 / 19



01 — Executive Summary

Overview

Jito Labs engaged OtterSec to assess the restakingrestaking program. This assessment was conducted between

September 20th and October 10th, 2024. For more information on our auditing methodology, refer to

Appendix B.

Key Findings

We produced 8 findings throughout this audit engagement.

In particular, we identified a critical vulnerability, where the burn instruction allows users to bypass

withdrawal ticket checks, enabling unauthorized withdrawal of unstaked amounts (OS-JRS-ADV-00).

Additionally, we highlighted another issue concerning the desynchronization of the VRT token amount

stored in the Staker Withdrawal Ticket vault account by sending an additional VRT token directly to the

token account (OS-JRS-ADV-02). Furthermore, the permissionless design of burning the withdrawal

tickets allows callers to set an unfair minimum amount out (OS-JRS-ADV-03).

We also provided recommendations to pass the token program ID from the input AccountInfoAccountInfo (OS-

JRS-SUG-00) and suggested specific modifications to enhance code quality and readability (OS-JRS-

SUG-02).

© 2024 Otter Audits LLC. All Rights Reserved. 2 / 19



02 — Scope

The source code was delivered to us in a Git repository at https://github.com/jito-foundation/restaking.

This audit was performed against commit f04242f.

A brief description of the program is as follows:A brief description of the program is as follows:

NameName DescriptionDescription

restaking A restaking platform for Solana and SVM environments.

© 2024 Otter Audits LLC. All Rights Reserved. 3 / 19

https://github.com/jito-foundation/restaking
https://github.com/jito-foundation/restaking/commit/f04242faa5f38e722c4ff5cbe7201b002d1cb66d


03 — Findings

Overall, we reported 8 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact

and should be remediated as soon as possible. General findings do not have an immediate impact but will

aid in mitigating future vulnerabilities.

Severity Count

CRITICALCRITICAL 1

HIGHHIGH 4

MEDIUMMEDIUM 0

LOWLOW 0

INFOINFO 3

© 2024 Otter Audits LLC. All Rights Reserved. 4 / 19



04 — Vulnerabilities

Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-

bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

IDID SeveritySeverity StatusStatus DescriptionDescription

OS-JRS-ADV-00
CRITICALCRITICAL RESOLVEDRESOLVED

The burnburn instruction allows users to bypass

withdrawal ticket checks, enabling unautho-

rized withdrawal of unstaked amounts.

OS-JRS-ADV-01
HIGHHIGH RESOLVEDRESOLVED

When a vault undergoes multiple slashes,

it may reduce the deposited token balance

but leave VRTVRT token supply unchanged.

Subsequent depositors will face share dilu-

tion, potentially contributing tokens without

receiving adequate VRTVRT shares.

OS-JRS-ADV-02
HIGHHIGH RESOLVEDRESOLVED

In process_burn_withdrawal_ticketprocess_burn_withdrawal_ticket
, an attacker may desynchronize the

VRTVRT token amount stored in the

VaultStakerWithdrawalTicketVaultStakerWithdrawalTicket ac-

count by sending an additional VRTVRT token

directly to the token account.

OS-JRS-ADV-03
HIGHHIGH RESOLVEDRESOLVED

The permissionless design of

process_burn_withdrawal_ticketprocess_burn_withdrawal_ticket
allows callers to set an un-

fair min_amount_outmin_amount_out and

potentially skip the necessary

CrankVaultUpdateStateTrackerCrankVaultUpdateStateTracker call,

risking the stakerstaker ’s rewards.

OS-JRS-ADV-04
HIGHHIGH RESOLVEDRESOLVED

There is a potential for share inflation in the

vault, where sending tokens and invoking

UpdateVaultBalanceUpdateVaultBalance may allow an at-

tacker to unfairly benefit from the first de-

posit, effectively stealing it.

© 2024 Otter Audits LLC. All Rights Reserved. 5 / 19



Jito Restaking Audit 04 — Vulnerabilities

UnauthorizedWithdrawal of Unstaked Amount CRITICALCRITICAL OS-JRS-ADV-00

Description

The burnburn instruction may be utilized to withdraw the unstaked amounts intended for withdrawal tickets.

In the current implementation, since the function only validates that the amount_inamount_in is less than the VRTVRT
supply, any user with VRTVRT tokens may call the burnburn instruction to initiate a withdrawal, regardless of

whether they have a legitimate withdrawal ticket. This allows a user to bypass the standard withdrawal

process by directly burning tokens and accessing funds

Remediation

Remove the burn instruction from the withdrawal process.

Patch

Resolved in PR#137.

© 2024 Otter Audits LLC. All Rights Reserved. 6 / 19

https://github.com/jito-foundation/restaking/pull/137


Jito Restaking Audit 04 — Vulnerabilities

Slashing-Induced Share Dilution HIGHHIGH OS-JRS-ADV-01

Description

The vulnerability arises when the vault’s underlying tokens have been completely slashed, resulting in

a balance of zero deposited tokens but still having outstanding VRTVRT tokens in circulation. In such a

scenario, the current implementation of calculate_vrt_mint_amountcalculate_vrt_mint_amount may result in an unfair outcome

for new depositors. If tokens_depositedtokens_deposited is zero due to slashing, but there are still outstanding VRTVRT
tokens, any new depositor will encounter the initial check: if self.tokens_deposited() == 0if self.tokens_deposited() == 0 .

>_ restaking/vault_core/src/vault.rs rust

/// Calculate the amount of VRT tokens to mint based on the amount of tokens deposited in
thevault.↪→

/// If no tokens have been deposited, the amount is equal to the amount passed in.
/// Otherwise, the amount is calculated as the pro-rata share of the total VRT supply.
pub fn calculate_vrt_mint_amount(&self, amount: u64) -> Result<u64, VaultError> {

if self.tokens_deposited() == 0 {
return Ok(amount);

}
amount

.checked_mul(self.vrt_supply())

.and_then(|x| x.checked_div(self.tokens_deposited()))

.ok_or(VaultError::VaultOverflow)
}

This check then returns the amount deposited as the minted VRTVRT without considering the existing VRTVRT
supply. In effect, this first depositor is assigned an amount of VRTVRT equal to their deposited tokens, but

the minted VRTVRT does not accurately reflect their share of ownership because of the outstanding VRTVRT
tokens that others still hold.

Thus, the first depositor effectively donates their deposited tokens to prior VRTVRT holders without receiving

a fair share of VRTVRT . Instead of gaining proportional ownership, their assets unfairly inflate the value

of pre-existing VRTVRT tokens. If the vault undergoes multiple slashes, it will progressively reduce

tokens_depositedtokens_deposited while outstanding VRTVRT tokens remain the same, deflating the value of the VRTVRT
token. Consequently, there may be a risk of overflow in the share calculations due to needing to mint too

many shares.

Remediation

Remove the slashing instruction.

© 2024 Otter Audits LLC. All Rights Reserved. 7 / 19



Jito Restaking Audit 04 — Vulnerabilities

Patch

Resolved in PR#141.

© 2024 Otter Audits LLC. All Rights Reserved. 8 / 19

https://github.com/jito-foundation/restaking/pull/141


Jito Restaking Audit 04 — Vulnerabilities

DOS Due toWithdrawal Ticket Desynchronization HIGHHIGH OS-JRS-ADV-02

Description

There is a potential Denial of Service (DoS) attack in

vault_program::process_burn_withdrawal_ticketvault_program::process_burn_withdrawal_ticket that may occur if an attacker manipulates the

state of the system by directly sending VRTVRT tokens to the

vault_staker_withdrawal_ticket_token_accountvault_staker_withdrawal_ticket_token_account . This will result in inconsistencies between the
amount of VRTVRT tokens recorded in the token account and the amount recorded in the

VaultStakerWithdrawalTicketVaultStakerWithdrawalTicket account.

The direct transfer will increase the balance of tokens in the token account without updating

VaultStakerWithdrawalTicketVaultStakerWithdrawalTicket , creating a desynchronization between these two values since
vault_staker_withdrawal_ticket.vrt_amount()vault_staker_withdrawal_ticket.vrt_amount() would still reflect the original amount of tokens

expected by the withdrawal process.

>_ vault_program/src/burn_withdrawal_ticket.rs rust

pub fn process_burn_withdrawal_ticket(
program_id: &Pubkey,
accounts: &[AccountInfo],
min_amount_out: u64,

) -> ProgramResult {
[...]
// close token account
invoke_signed(

&close_account(
&spl_token::id(),
vault_staker_withdrawal_ticket_token_account.key,
staker.key,
vault_staker_withdrawal_ticket_info.key,
&[],

)?,
&[

vault_staker_withdrawal_ticket_token_account.clone(),
staker.clone(),
vault_staker_withdrawal_ticket_info.clone(),

],
&[&seed_slices],

)?;
close_program_account(program_id, vault_staker_withdrawal_ticket_info, staker)?;
[...]

}

© 2024 Otter Audits LLC. All Rights Reserved. 9 / 19



Jito Restaking Audit 04 — Vulnerabilities

close_accountclose_account checks that the amount stored in the token account is zero before allowing the account

to be closed. If the amounts are out of sync, close_accountclose_account operation may fail, as it verifies that the

account’s balance is zero. This effectively prevents the stakerstaker from closing their withdrawal ticket and

claiming tokens, resulting in a denial-of-service scenario.

Remediation

Ensure the program always verifies the actual balance of the token account directly via SPLSPL Token

Program methods before allowing operations that rely on the amount of tokens.

Patch

Resolved in PR#140.

© 2024 Otter Audits LLC. All Rights Reserved. 10 / 19

https://github.com/jito-foundation/restaking/pull/140


Jito Restaking Audit 04 — Vulnerabilities

Lack of Proper Permission Checks and Safeguards HIGHHIGH OS-JRS-ADV-03

Description

The vulnerability in vault_program::process_burn_withdrawal_ticketvault_program::process_burn_withdrawal_ticket arises from the lack of

permission checks and safeguards around the parameters passed into the function, specifically the

min_amount_outmin_amount_out value and the potential omission of the CrankVaultUpdateStateTrackerCrankVaultUpdateStateTracker instruc-

tion. The min_amount_outmin_amount_out parameter specifies the minimum amount of tokens the caller expects

to receive after burning their withdrawal ticket. A malicious user may pass an artificially low value for

min_amount_outmin_amount_out .

>_ vault_program/src/burn_withdrawal_ticket.rs rust

pub fn process_burn_withdrawal_ticket(
program_id: &Pubkey,
accounts: &[AccountInfo],
min_amount_out: u64,

) -> ProgramResult {
let (required_accounts, optional_accounts) = accounts.split_at(11);
let [config, vault_info, vault_token_account, vrt_mint, staker, staker_token_account,

vault_staker_withdrawal_ticket_info, vault_staker_withdrawal_ticket_token_account,
vault_fee_token_account, token_program, system_program] =

↪→

↪→

required_accounts
else {

return Err(ProgramError::NotEnoughAccountKeys);
};

Config::load(program_id, config, false)?;
let config_data = config.data.borrow();
[...]

}

If the fee deducted from the burn process is high, the stakerstaker may end up receiving much less than

they anticipated. The stakerstaker may be unfairly penalized if the function proceeds to burn the withdrawal

ticket with this unfairly low expectation. Also, if the CrankVaultUpdateStateTrackerCrankVaultUpdateStateTracker instruction is

not invoked, the stakerstaker may miss out on rewards that they are entitled to because the state of the vault

was not updated.

Remediation

Introduce checks to validate the min_amount_outmin_amount_out parameter, ensuring it falls within a reasonable range

based on the current state of the vault and the user’s holdings. Also, enforce the requirement to call the

CrankVaultUpdateStateTrackerCrankVaultUpdateStateTracker instruction within the same transaction.

© 2024 Otter Audits LLC. All Rights Reserved. 11 / 19



Jito Restaking Audit 04 — Vulnerabilities

Patch

Resolved in PR#142 and PR#138.

© 2024 Otter Audits LLC. All Rights Reserved. 12 / 19

https://github.com/jito-foundation/restaking/pull/142
https://github.com/jito-foundation/restaking/pull/138


Jito Restaking Audit 04 — Vulnerabilities

Vault Share Inflation Risk HIGHHIGH OS-JRS-ADV-04

Description

The vulnerability concerns the vault’s mechanism, particularly the updating of balance and share minting.

By sending tokens to the vault and invoking the UpdateVaultBalanceUpdateVaultBalance , a user may manipulate the

effective share value associated with VRTVRT tokens. If this action occurs after a vault has been slashed

(when the total tokens deposited are significantly reduced), the ratio of VRTVRT tokens to deposited tokens

becomes skewed. This allows the user to receive disproportionately more VRT tokens relative to their

deposit, inflating their share of the vault without a corresponding increase in the overall asset value.

The primary risk involves the first depositor in a vault. If the first depositor’s share value is not adequately

protected against slashing, they can effectively lose the value of their initial deposit if later depositors take

advantage of this inflation mechanism.

Remediation

Enforce a minimum deposit amount to ensure that only significant deposits are made, thereby reducing

the incentive for malicious actors to exploit the system through minimal deposits. The rounding amount

may be refunded in mint_with_feemint_with_fee .

Patch

Resolved in PR#150.

© 2024 Otter Audits LLC. All Rights Reserved. 13 / 19

https://github.com/jito-foundation/restaking/pull/150


05 — General Findings

Here, we present a discussion of general findings during our audit. While these findings do not present an

immediate security impact, they represent anti-patterns and may result in security issues in the future.

IDID DescriptionDescription

OS-JRS-SUG-00

Utilization of an unsafe pattern by directly passing &spl_token::id()&spl_token::id() as

the token_program_idtoken_program_id when interacting with the SPLSPL token program.

OS-JRS-SUG-01

There is a possibility of over-withdrawing if a crank process is not complete

within an epoch, causing discrepancies in the accounting, and delays in

cranks result in improper updates since the cooldown is applied before the

epoch’s withdrawal accounting is finalized.

OS-JRS-SUG-02
Suggestions regarding inconsistencies in the codebase and ensuring ad-

herence to coding best practices.

© 2024 Otter Audits LLC. All Rights Reserved. 14 / 19



Jito Restaking Audit 05 — General Findings

Unsafe SPL Token ID Handling OS-JRS-SUG-00

Description

In the current code, when calling SPLSPL token instructions, the program passes &spl_token::id()&spl_token::id()
directly as the token program ID. This utilizes the static program ID of the SPLSPL token program (

spl_token::id()spl_token::id() ), which assumes that this ID will always be the correct one in utilization. However,

in some contexts, there may be custom deployments of the SPLSPL token program or alternative token

programs that implement similar functionality.

Remediation

Pass the token program ID from the input AccountInfoAccountInfo . This ensures that the token program ID is

checked dynamically from the input accounts rather than relying on a hardcoded ID.

© 2024 Otter Audits LLC. All Rights Reserved. 15 / 19



Jito Restaking Audit 05 — General Findings

Risk of Over-withdrawing OS-JRS-SUG-01

Description

The current VaultUpdateStateTrackerVaultUpdateStateTracker flow results in over-withdrawing if the crank does not finish

in an epoch. However, if the crank is delayed, the actual state of the vault may change, and as a result,

insufficient assets may be available to fulfill withdrawal requests. When a crank executes but does not

finish in the expected time frame, the withdrawal requests that are processed may not account for the most

recent state of the vault, resulting in improper accounting in vault_operator_delegation.updatevault_operator_delegation.update ,
since the update happens after cooldown is called for the current epoch.

Remediation

Ensure that the state of the vault is immediately reconciled after cooldown operations are processed to

accurately reflect the current available assets.

Patch

Resolved in PR#145 and PR#163.

© 2024 Otter Audits LLC. All Rights Reserved. 16 / 19

https://github.com/jito-foundation/restaking/pull/145
https://github.com/jito-foundation/restaking/pull/163


Jito Restaking Audit 05 — General Findings

Code Maturity OS-JRS-SUG-02

Description

1. The process_withdrawal_assetprocess_withdrawal_asset and process_initialize_vault_with_mintprocess_initialize_vault_with_mint instructions

are unutilized and should be removed.

2. There is a potential inconsistency in the value of discriminators utilized in the vault_corevault_core accounts,

where there is a jump between values, specifically from seven in VaultStakerWithdrawalTicketVaultStakerWithdrawalTicket
to nine in VaultUpdateStateTrackerVaultUpdateStateTracker .

3. WithdrawalAllocationMethod::GreedyWithdrawalAllocationMethod::Greedy is biased against the first few operators. Thewithdrawal

selection process always starts from the same point (zero index) in check_and_update_indexcheck_and_update_index
, which creates a pattern of bias where only a subset of operators benefit from the withdrawal

mechanism. Utilize a dynamic starting point based on the current epoch and the number of operators

( epoch % operators.lengthepoch % operators.length ). This will ensure every operator has an equal opportunity to be
selected for withdrawals over time, regardless of their position in the list.

>_ vault_core/src/vault_update_state_tracker.rs rust

pub fn check_and_update_index(&mut self, index: u64) -> Result<(), VaultError> {
if self.last_updated_index() == u64::MAX {

if index != 0 {
msg!("VaultUpdateStateTracker incorrect index");
return Err(VaultError::VaultUpdateIncorrectIndex);

}
}[...]
self.last_updated_index = PodU64::from(index);
Ok(())

}

Remediation

Implement the above-mentioned suggestions.

Patch

1. Issue #2 resolved in PR#139.

2. Issue #3 resolved in PR#144.

© 2024 Otter Audits LLC. All Rights Reserved. 17 / 19

https://github.com/jito-foundation/restaking/pull/139
https://github.com/jito-foundation/restaking/pull/144


A— Vulnerability Rating Scale

We rated our findings according to the following scale. Vulnerabilities have immediate security implications.

Informational findings may be found in the General Findings.

CRITICALCRITICAL Vulnerabilities that immediately result in a loss of user funds with minimal preconditions.

Examples:

• Misconfigured authority or access control validation.

• Improperly designed economic incentives leading to loss of funds.

HIGHHIGH
Vulnerabilities that may result in a loss of user funds but are potentially difficult to exploit.

Examples:

• Loss of funds requiring specific victim interactions.

• Exploitation involving high capital requirement with respect to payout.

MEDIUMMEDIUM Vulnerabilities that may result in denial of service scenarios or degraded usability.

Examples:

• Computational limit exhaustion through malicious input.

• Forced exceptions in the normal user flow.

LOWLOW Low probability vulnerabilities, which are still exploitable but require extenuating circumstances

or undue risk.

Examples:

• Oracle manipulation with large capital requirements and multiple transactions.

INFOINFO Best practices to mitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants.

• Improved input validation.

© 2024 Otter Audits LLC. All Rights Reserved. 18 / 19



B — Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and

implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound

in the context of an on-chain program. In other words, there is no way to steal funds or deny service,

ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal

interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash

loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle

is deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s

execution model. While this varies from chain to chain, some common implementation vulnerabilities

include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to be more “checklist” style. In contrast,

design vulnerabilities require a strong understanding of the underlying system and the various interactions:

both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,

we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,

picking up on details that others may have missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some

insight into our auditing procedure and thought process.

© 2024 Otter Audits LLC. All Rights Reserved. 19 / 19


	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	[8.75em][l]OS-JRS-ADV-00  | Unauthorized Withdrawal of Unstaked Amount
	[8.75em][l]OS-JRS-ADV-01  | Slashing-Induced Share Dilution
	[8.75em][l]OS-JRS-ADV-02  | DOS Due to Withdrawal Ticket Desynchronization
	[8.75em][l]OS-JRS-ADV-03  | Lack of Proper Permission Checks and Safeguards
	[8.75em][l]OS-JRS-ADV-04  | Vault Share Inflation Risk

	General Findings
	[8.75em][l]OS-JRS-SUG-00  | Unsafe SPL Token ID Handling
	[8.75em][l]OS-JRS-SUG-01  | Risk of Over-withdrawing
	[8.75em][l]OS-JRS-SUG-02  | Code Maturity

	Appendices
	Vulnerability Rating Scale
	Procedure


